Cuando muere una estrella?

¿cómo será ese momento? ¿Qué ocurrirá —inevitablemente— con el Sol? Aunque este no es un tema nuevo y no es difícil encontrar la información, puede ser interesante reflexionar sobre ello.

En primer lugar, tengamos en cuenta algunos elementos básicos sobre el funcionamiento de una estrella. Todas las estrellas emiten energía, una parte de la misma en forma de luz visible, que hace que las veamos brillar en el cielo. Esa energía procede casi siempre de reacciones termonucleares de fusión que suceden en el interior de las estrellas. El combustible principal de esas reacciones, en una estrella como el Sol, es el hidrógeno, que se fusiona formando helio. Además de la importancia que tiene para nosotros la energía emitida en el proceso, sin fusión el Sol no estaría ahí: la energía crea una presión hacia en exterior que mantiene la integridad de la estrella, que de otro modo, dada la enorme gravedad creada por su gran masa, se colapsaría. Dicho de otra manera, en el Sol hay un equilibrio entre la fuerza explosiva en su núcleo y la gravedad creada por su masa, sin la cual la estrella estallaría (como, de hecho, uno esperaría en cualquier explosión termonuclear).

Mientras el hidrógeno abunda, la situación es bastante estable. Entre otras cosas, es gracias a ello que estamos aquí. Pero el combustible no puede durar para siempre. Cuando una estrella ha agotado buena parte del hidrógeno que se quema en su núcleo, el helio formado comienza a interferir en el proceso, llegándose a un punto en que la reacción termonuclear puede pararse. Se dice entonces, de un modo muy gráfico, que la estrella se ha envenenado por helio.

Como resultado de este envenenamiento, se genera menos energía en el núcleo y disminuye la presión hacia en exterior, de modo que la estrella se contrae y aumenta su temperatura. Alrededor del núcleo de helio, inerte pero muy caliente y densificado, comienza a quemarse el hidrógeno en capas cada vez más externas. El resultado de esto es que la estrella se expande, al despazarse hacia el exterior el lugar de la fusión nuclear. Aunque el núcleo se mantiene muy caliente, las capas más externas cada vez se desdibujan más, y la temperatura superficial disminuye. Es por eso que el color se desplaza hacia el rojo: la estrella se ha convertido en una gigante roja.

Llegado un punto y si la estrella es suficientemente pequeña, la compresión del núcleo interno se ralentiza por efecto del gas de electrones libres degenerados. (Este es un efecto de origen cuántico, que se debe a que los electrones que rodean el plasma de nucleos atómicos no pueden ocupar los mismos estados cuánticos. Por así decirlo, los electrones se aprisionan entre sí al concentrarse en torno al núcleo, oponiéndose a la paulatina densificación del núcleo.) Debido a la compresión continuada, La temperatura aumenta hasta el punto de ignición del helio, en torno a los 100 millones de grados. En una estrella con una masa como la del Sol, el núcleo está parcialmente degenerado en ese momento. Entonces, de modo súbito, se produce una explosión de carácter moderado: es el flash de helio, que marca el inicio de la combustión termonuclear de dicho elemento, para formar carbono y oxígeno como productos.

No obstante, la masa del Sol no es suficiente como para que, una vez agotado el helio, se pase a la siguiente secuencia, la fusión del carbono, que produce neón. Así, unos cientos de millones de años después de haber entrado en la fase de gigante roja prácticamente todo el combustible utilizable se habrá agotado, sin que se pueda iniciar una nueva reacción nuclear. Como resultado, la estrella seComparación del tamaño actual del Sol con el que tendría en el estado de enana blanca encaminará hacia un nuevo estado, el de enana blanca, compuesta por lo que era el núcleo en el estado anterior, pero comprimido hasta densidades inmensas (para hacernos una idea, toda la masa del Sol comprimida al tamaño de la Tierra). El material que rodea a la enana blanca, que antes formaba la gigante roja, se calienta e ioniza por efecto de la radiación emitida por la enana blanca, formando complejos y curiosos motivos filamentosos, denominados nebulosa planetaria, un ejemplo es la conocida como nebulosa del ojo de gato, fotografiada por el telescopio Hubble.

Enana blanca:

Una enana blanca es un remanente estelar que se genera cuando una estrella de masa menor a 9-10 masas solares ha agotado su combustible nuclear. De hecho, se trata de una etapa de la evolución estelar que atravesará el 97% de las estrellas que conocemos, incluido el Sol. Las enanas blancas son, junto a las enanas rojas, las estrellas más abundantes en el universo.

Las enanas blancas están compuestas por átomos en estado de plasma; como en su núcleo ya no se producen reacciones termonucleares, la estrella no posee ninguna fuente de energía que equilibre el colapso gravitatorio, por lo que la enana blanca se va comprimiendo sobre sí misma debido a su propio peso. La distancia entre los átomos en el seno de la misma disminuye radicalmente, por lo que los electrones tienen menos espacio para moverse (en otras palabras, la densidad aumenta mucho, hasta órdenes de 106 g/cm3, varias toneladas por centímetro cúbico). A estas densidades entran en juego el principio de incerteza de Heisenberg y el principio de exclusión de Pauli para los electrones, quienes se ven obligados a moverse a muy altas velocidades, generando la llamada presión de degeneración electrónica, que es la que efectivamente se opone al colapso de la estrella. Esta presión de degeneración electrónica es un fenómeno radicalmente diferente de la presión térmica, que es la que mayormente soporta a las «estrellas normales». Las densidades mencionadas son tan enormes que una masa similar a la del Sol cabría en un volumen como el de la Tierra, y son sólo superadas por las densidades de las estrellas de neutrones y los agujeros negros. Las enanas blancas emiten solamente energía térmica almacenada, y por ello tienen luminosidades muy débiles.


Las estrellas de masa baja e intermedia (masas menores que 8-10 masas solares), al acabar la fusión del hidrógeno durante su vida en la secuencia principal, se expanden como gigantes rojas, y proceden a fusionar helio en carbono y oxígeno en su núcleo. Si la gigante roja no posee suficiente temperatura como para luego fusionar a su vez el carbono y el oxígeno, su núcleo se comprime por la gravedad y su envoltura es expulsada en una serie de pulsos térmicos durante la fase de gigante en la rama asintótica, produciendo así una nebulosa planetaria que envuelve un remanente estelar: la enana blanca.

El 99% de las enanas blancas está constituido básicamente por carbono y oxígeno, que son los residuos de la fusión del helio. Sin embargo, sobre la superficie se halla una capa de hidrógeno y helio prensados y parcialmente degenerados, que forman la atmósfera de la enana blanca. Sólo unas pocas están formadas íntegramente por helio al no haber llegado a quemarlo, o por oxígeno, neón y magnesio, productos de la combustión del carbono.

Recién formadas, las enanas blancas poseen temperaturas muy altas, pero al no producir energía, se van enfriando gradualmente. En teoría, las enanas blancas se enfriarán con el tiempo hasta que ya no emitan radiación detectable, para entonces convertirse en enanas negras. Sin embargo, el proceso de enfriamiento es tan lento, que la edad del universo desde el Big Bang es demasiado corta para albergar, en este momento, a una de estas enanas negras. De hecho, las enanas blancas más frías que se conocen poseen temperaturas de varios miles de K.


Super Nova


Una supernova (del latín nova, «nueva») es una explosión estelar que puede manifestarse de forma muy notable, incluso a simple vista, en lugares de la esfera celeste donde antes no se había detectado nada en particular. Por esta razón, a eventos de esta naturaleza se los llamó inicialmente stellae novae («estrellas nuevas») o simplemente novae. Con el tiempo se hizo la distinción entre fenómenos aparentemente similares pero de luminosidad intrínseca muy diferente; los menos luminosos continuaron llamándose novae (novas), en tanto que a los más luminosos se les agregó el prefijo «super-».

Las supernovas producen destellos de luz intensísimos que pueden durar desde varias semanas a varios meses. Se caracterizan por un rápido aumento de la intensidad hasta alcanzar un máximo, para luego decrecer en brillo de forma más o menos suave hasta desaparecer completamente.

Se han propuesto varios escenarios para su origen. Pueden ser estrellas masivas que ya no pueden desarrollar reacciones termonucleares en su núcleo, y que son incapaces de sostenerse por la presión de degeneración de los electrones, lo que las lleva a contraerse repentinamente (colapsar) y generar, en el proceso, una fuerte emisión de energía. Otro proceso más violento aún, capaz de generar destellos incluso mucho más intensos, puede suceder cuando una enana blanca miembro de un sistema binario cerrado, recibe suficiente masa de su compañera como para superar el límite de Chandrasekhar y proceder a la fusión instantánea de todo su núcleo: esto dispara una explosión termonuclear que expulsa casi todo, si no todo, el material que la formaba.


La explosión de supernova provoca la expulsión de las capas externas de la estrella por medio de poderosas ondas de choque, enriqueciendo el espacio que la rodea con elementos pesados. Los restos eventualmente componen nubes de polvo y gas. Cuando el frente de onda de la explosión alcanza otras nubes de gas y polvo cercanas, las comprime y puede desencadenar la formación de nuevas nebulosas solares que originen, después de cierto tiempo, nuevos sistemas estelares (quizá con planetas, al estar las nebulosas enriquecidas con los elementos procedentes de la explosión).

Estos residuos estelares en expansión se denominan remanentes y pueden tener o no un objeto compacto en su interior. Dicho remanente terminará por diluirse en el medio interestelar al cabo de millones de años.


Agujeros Negros


Un agujero negro u hoyo negro es una región del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que provoca un campo gravitatorio tal que ninguna partícula material, ni siquiera los fotones de luz, puede escapar de dicha región.

La curvatura del espacio-tiempo o «gravedad de un agujero negro» provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es debido a la gran cantidad de energía del objeto celeste. El horizonte de sucesos separa la región del agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking, Ellis y Penrose demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros. Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.


Se cree que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas.


Clasificación teórica



Según su origen, teóricamente pueden existir al menos tres clases de agujeros negros:

Agujeros negros primordiales

Aquellos que fueron creados temprano en la historia del Universo. Sus masas pueden ser variadas y ninguno ha sido observado.

Según la masa

* Agujeros negros supermasivos: con masas de varios millones de masas solares. Se hallarían en el corazón de muchas galaxias. Se forman en el mismo proceso que da origen a las componentes esféricas de las galaxias.
* Agujeros negros de masa estelar. Se forman cuando una estrella de masa 2,5 mayor que la masa del Sol se convierte en supernova e implosiona. Su núcleo se concentra en un volumen muy pequeño que cada vez se va reduciendo más.
* Mini agujeros negros. Son objetos hipotéticos, algo más pequeños que los estelares. Éstos pueden llegar a evaporarse en un período relativamente corto fácilmente mediante emisión de radiación de Hawking si son suficientemente pequeños.


Según el momento angular

* Un agujero negro sin carga y sin momento angular es un agujero negro de Schwarzschild.
* Un agujero negro rotatorio (con momento angular mayor que 0), se denomina agujero negro de Kerr..

Estrella de neutrones


Una estrella de neutrones es un remanente estelar dejado por una estrella supergigante después de agotar el combustible nuclear en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic. Como su nombre lo indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones. La masa original de la supernova debe ser mayor que 9 a 10 masas solares y menor que un cierto valor que depende de la metalicidad. Estrellas con masas menores que 9-10 masas solares evolucionan en enanas blancas envueltas, al menos por un tiempo, por nebulosidades (nebulosas planetarias), mientras que estrellas con masas mayores que el límite superior evolucionan en agujeros negros.

Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares y un radio de entre 20 y 10 km (análogamente a lo que ocurre con las enanas blancas, a mayor masa corresponde un menor radio).

La principal característica de las estrellas de neutrones es que resisten el colapso gravitatorio mediante la presión de degeneración de los electrones, sumado a la presión generada por la parte repulsiva de la interacción nuclear fuerte entre bariones. Esto contrasta con las estrellas de secuencia principal, que equilibran la fuerza de gravedad con la presión térmica originada en las reacciones termonucleares en su interior.

Actualmente no se sabe si el núcleo de una estrella de neutrones tiene la misma estructura que sus capas externas o si, por el contrario, está formado por plasma de quarks-gluones. Lo cierto es que las altísimas densidades que se dan en la zona central de estos objetos son tan elevadas que no permiten hacer predicciones válidas con modelos informáticos ni con observaciones experimentales.





Fuente: Astroseti, astromia, astroenlazador, 20minutos, wikipedia, observatorio-geminisaustral, astroelche.blogdiario.com, educared, estrellas_muerte_estelar, Muerte de una Estrella, Proyecto Celestia, NASA

0 comentarios:

Publicar un comentario

Seguidores

Mi lista de blogs